Disconnected Cuts in Claw-free Graphs

نویسندگان

  • Barnaby Martin
  • Daniel Paulusma
  • Erik Jan van Leeuwen
چکیده

A disconnected cut of a connected graph is a vertex cut that itself also induces a disconnected subgraph. The decision problem whether a graph has a disconnected cut is called Disconnected Cut. This problem is closely related to several homomorphism and contraction problems, and fits in an extensive line of research on vertex cuts with additional properties. It is known that Disconnected Cut is NP-hard on general graphs, while polynomial-time algorithms are known for several graph classes. However, the complexity of the problem on claw-free graphs remained an open question. Its connection to the complexity of the problem to contract a claw-free graph to the 4-vertex cycle C4 led Ito et al. (TCS 2011) to explicitly ask to resolve this open question. We prove that Disconnected Cut is polynomial-time solvable on claw-free graphs, answering the question of Ito et al. The centerpiece of our result is a novel decomposition theorem for claw-free graphs of diameter 2, which we believe is of independent interest and expands the research line initiated by Chudnovsky and Seymour (JCTB 2007–2012) and Hermelin et al. (ICALP 2011). On our way to exploit this decomposition theorem, we characterize how disconnected cuts interact with certain cobipartite subgraphs, and prove two further novel algorithmic results, namely Disconnected Cut is polynomialtime solvable on circular-arc graphs and line graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The complement of proper power graphs of finite groups

For a finite group G, the proper power graph P∗(G) of G is the graph whose vertices are non-trivial elements of G and two vertices u and v are adjacent if and only if u 6= v and um = v or vm = u for some positive integer m. In this paper, we consider the complement of P∗(G), denoted by P(G). We classify all finite groups whose complement of proper power graphs is complete, bipartite, a path, a ...

متن کامل

Minimal Disconnected Cuts in Planar Graphs

The problem of finding a disconnected cut in a graph is NP-hard in general but polynomial-time solvable on planar graphs. The problem of finding a minimal disconnected cut is also NP-hard but its computational complexity was not known for planar graphs. We show that it is polynomial-time solvable on 3-connected planar graphs but NP-hard for 2-connected planar graphs. Our technique for the first...

متن کامل

The Structure of Claw-Free Perfect Graphs

In 1988, Chvátal and Sbihi [4] proved a decomposition theorem for claw-free perfect graphs. They showed that claw-free perfect graphs either have a clique-cutset or come from two basic classes of graphs called elementary and peculiar graphs. In 1999, Maffray and Reed [6] successfully described how elementary graphs can be built using line-graphs of bipartite graphs using local augmentation. How...

متن کامل

Approximating independence polynomials of claw-free graphs

Matchings in graphs correspond to independent sets in the corresponding line graphs. Line graphs are an important subclass of claw-free graphs. Hence studying independence polynomials of claw-free graphs is a natural extension of studying matching polynomials of graphs. We extend a result of Bayati et.al. showing a fully polynomial time approximation scheme (FPTAS) for computing the independenc...

متن کامل

On cycles in intersection graphs of rings

‎Let $R$ be a commutative ring with non-zero identity. ‎We describe all $C_3$‎- ‎and $C_4$-free intersection graph of non-trivial ideals of $R$ as well as $C_n$-free intersection graph when $R$ is a reduced ring. ‎Also, ‎we shall describe all complete, ‎regular and $n$-claw-free intersection graphs. ‎Finally, ‎we shall prove that almost all Artin rings $R$ have Hamiltonian intersection graphs. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018